121 research outputs found

    Hierarchical image simplification and segmentation based on Mumford-Shah-salient level line selection

    Full text link
    Hierarchies, such as the tree of shapes, are popular representations for image simplification and segmentation thanks to their multiscale structures. Selecting meaningful level lines (boundaries of shapes) yields to simplify image while preserving intact salient structures. Many image simplification and segmentation methods are driven by the optimization of an energy functional, for instance the celebrated Mumford-Shah functional. In this paper, we propose an efficient approach to hierarchical image simplification and segmentation based on the minimization of the piecewise-constant Mumford-Shah functional. This method conforms to the current trend that consists in producing hierarchical results rather than a unique partition. Contrary to classical approaches which compute optimal hierarchical segmentations from an input hierarchy of segmentations, we rely on the tree of shapes, a unique and well-defined representation equivalent to the image. Simply put, we compute for each level line of the image an attribute function that characterizes its persistence under the energy minimization. Then we stack the level lines from meaningless ones to salient ones through a saliency map based on extinction values defined on the tree-based shape space. Qualitative illustrations and quantitative evaluation on Weizmann segmentation evaluation database demonstrate the state-of-the-art performance of our method.Comment: Pattern Recognition Letters, Elsevier, 201

    Connected Filtering on Tree-Based Shape-Spaces

    Get PDF
    International audienceConnected filters are well-known for their good contour preservation property. A popular implementation strategy relies on tree-based image representations: for example, one can compute an attribute characterizing the connected component represented by each node of the tree and keep only the nodes for which the attribute is sufficiently high. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is performed not in the space of the image, but in the space of shapes built from the image. Such a processing of shape-space filtering is a generalization of the existing tree-based connected operators. Indeed, the framework includes the classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on non-increasing attributes. Finally, we also propose a new class of connected operators that we call morphological shapings. Some illustrations and quantitative evaluations demonstrate the usefulness and robustness of the proposed shape-space filters

    Two applications of shape-based morphology: blood vessels segmentation and a generalization of constrained connectivity

    Get PDF
    International audienceConnected filtering is a popular strategy that relies on tree-based image representations: for example, one can compute an attribute on each node of the tree and keep only the nodes for which the attribute is sufficiently strong. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is done not in the space of the image, but on the space of shapes built from the image. Such a processing, that we called shape-based morphology, is a generalization of the existing tree-based connected operators. In this paper, two different applications are studied: in the first one, we apply our framework to blood vessels segmentation in retinal images. In the second one, we propose an extension of constrained connectivity. In both cases, quantitative evaluations demonstrate that shape-based filtering, a mere filtering step that we compare to more evolved processings, achieves state-of-the-art results

    Salient Level Lines Selection Using the Mumford-Shah Functional

    Get PDF
    International audienceMany methods relying on the morphological notion of shapes, (i.e., connected components of level sets) have been proved to be very useful for pattern analysis and recognition. Selecting meaningful level lines (boundaries of level sets) yields to simplify images while preserving salient structures. Many image simplification and/or segmentation methods are driven by the optimization of an energy functional, for instance the Mumford-Shah functional. In this article, we propose an efficient shape-based morphological filtering that very quickly compute to a locally (subordinated to the tree of shapes) optimal solution of the piecewise-constant Mumford- Shah functional. Experimental results demonstrate the efficiency, usefulness, and robustness of our method, when applied to image simplification, pre-segmentation, and detection of affine regions with viewpoint changes

    Context-based energy estimator: Application to object segmentation on the tree of shapes

    Get PDF
    International audienceImage segmentation can be defined as the detection of closed contours surrounding objects of interest. Given a family of closed curves obtained by some means, a difficulty is to extract the relevant ones. A classical approach is to define an energy minimization framework, where interesting contours correspond to local minima of this energy. Active contours, graph cuts or minimum ratio cuts are instances of such approaches. In this article, we propose a novel efficient ratiocut estimator which is both context-based and can be interpreted as an active contour. As a first example of the effectiveness of our formulation, we consider the tree of shapes, which provides a family of level lines organized in a tree hierarchy through an inclusion relationship. Thanks to the tree structure, the estimator can be computed incrementally in an efficient fashion. Experimental results on synthetic and real images demonstrate the robustness and usefulness of our method

    Morphological Filtering in Shape Spaces: Applications using Tree-Based Image Representations

    Full text link
    Connected operators are filtering tools that act by merging elementary regions of an image. A popular strategy is based on tree-based image representations: for example, one can compute an attribute on each node of the tree and keep only the nodes for which the attribute is sufficiently strong. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is done not in the space of the image, but on the space of shapes build from the image. Such a processing is a generalization of the existing tree-based connected operators. Indeed, the framework includes classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on shape attributes. Finally, we also propose a novel class of self-dual connected operators that we call morphological shapings.Comment: 4 pages, will appear in 21st International Conference on Pattern Recognition (ICPR 2012

    Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition—Application to 3D brain imaging

    Get PDF
    AbstractWe present a novel approach to model-based pattern recognition where structural information and spatial relationships have a most important role. It is illustrated in the domain of 3D brain structure recognition using an anatomical atlas. Our approach performs segmentation and recognition of the scene simultaneously. The solution of the recognition task is progressive, processing successively different objects, and using different pieces of knowledge about the object and about relationships between objects. Therefore, the core of the approach is the knowledge representation part, and constitutes the main contribution of this paper. We make use of a spatial representation of each piece of information, as a spatial fuzzy set representing a constraint to be satisfied by the searched object, thanks in particular to fuzzy mathematical morphology operations. Fusion of these constraints allows us to select, segment and recognize the desired object

    Tree-Based Morse Regions: A Topological Approach to Local Feature Detection

    Get PDF
    International audience—This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial " interest " points. Critical points are selected from what we call a tree-based shape-space. Specifically, they are selected from both the connected components of the upper level sets of the image (the Max-tree) and those of the lower level sets (the Min-tree). They correspond to specific nodes on those two trees: (1) to the leaves (extrema) and (2) to the nodes having bifurcation (saddle points). We then associate to each critical point the largest region that contains it and is topologically equivalent in its tree. We call such largest regions the Tree-Based Morse Regions (TBMR). TBMR can be seen as a variant of MSER, which are contrasted regions. Contrarily to MSER, TBMR relies only on topological information and thus fully inherit the invariance properties of the space of shapes (e.g., invariance to affine contrast changes and covariance to continuous transformations). In particular, TBMR extracts the regions independently of the contrast, which makes it truly contrast invariant. Furthermore, it is quasi parameter-free. TBMR extraction is fast, having the same complexity as MSER. Experimentally, TBMR achieves a repeatability on par with state-of-the-art methods, but obtains a significantly higher number of features. Both the accuracy and the robustness of TBMR are demonstrated by applications to image registration and 3D reconstruction

    Early defect in branching morphogenesis of the ureteric bud in induced nephron deficit

    Get PDF
    Early defect in branching morphogenesis of the ureteric bud in induced nephron deficit. Development of the metanephric kidney during embryogenesis can be altered both in vivo and in vitro by exposure to gentamicin, which may lead to oligonephronia. To study the role of the ureteric bud in nephron deficit genesis, we used metanephros organ cultures exposed to gentamicin as a model of impaired nephrogenesis. Ultrastructural localization of the antibiotic showed that by eight hours it was already present within the epithelial cells of the ureteric bud and in its growing ends, and also trapped in the adjacent blastema. Using confocal microscopy and image analysis, we devised a quantitative approach to analyze the branching pattern of the ureteric bud, and showed that by 24 hours of culture, despite no change of explants growth, gentamicin had significantly decreased the number of branching points. This effect involved the early branching events and was limited to end buds that had no nephron anlagen nearby. Our findings indicate that impaired branching morphogenesis of the ureteric bud is the likely event of gentamicin-induced nephron deficit

    T4 apoptosis in the acute phase of SARS-CoV-2 infection predicts long COVID

    Get PDF
    BackgroundAs about 10% of patients with COVID-19 present sequelae, it is important to better understand the physiopathology of so-called long COVID.MethodTo this aim, we recruited 29 patients hospitalized for SARS-CoV-2 infection and, by Luminex®, quantified 19 soluble factors in their plasma and in the supernatant of their peripheral blood mononuclear cells, including inflammatory and anti-inflammatory cytokines and chemokines, Th1/Th2/Th17 cytokines, and endothelium activation markers. We also measured their T4, T8 and NK differentiation, activation, exhaustion and senescence, T cell apoptosis, and monocyte subpopulations by flow cytometry. We compared these markers between participants who developed long COVID or not one year later.ResultsNone of these markers was predictive for sequelae, except programmed T4 cell death. T4 lymphocytes from participants who later presented long COVID were more apoptotic in culture than those of sequelae-free participants at Month 12 (36.9 ± 14.7 vs. 24.2 ± 9.0%, p = 0.016).ConclusionsOur observation raises the hypothesis that T4 cell death during the acute phase of SARS-CoV-2 infection might pave the way for long COVID. Mechanistically, T4 lymphopenia might favor phenomena that could cause sequelae, including SARS-CoV-2 persistence, reactivation of other viruses, autoimmunity and immune dysregulation. In this scenario, inhibiting T cell apoptosis, for instance, by caspase inhibitors, could prevent long COVID
    • …
    corecore